Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Viruses ; 15(5)2023 05 19.
Article in English | MEDLINE | ID: covidwho-20242059

ABSTRACT

Interleukin-6 has been recognized as a major role player in COVID-19 severity, being an important regulator of the cytokine storm. Hence, the evaluation of the influence of polymorphisms in key genes of the IL-6 pathway, namely IL6, IL6R, and IL6ST, may provide valuable prognostic/predictive markers for COVID-19. The present cross-sectional study genotyped three SNPs (rs1800795, rs2228145, and rs7730934) at IL6. IL6R and IL6ST genes, respectively, in 227 COVID-19 patients (132 hospitalized and 95 non-hospitalized). Genotype frequencies were compared between these groups. As a control group, published data on gene and genotype frequencies were gathered from published studies before the pandemic started. Our major results point to an association of the IL6 C allele with COVID-19 severity. Moreover, IL-6 plasmatic levels were higher among IL6 CC genotype carriers. Additionally, the frequency of symptoms was higher at IL6 CC and IL6R CC genotypes. In conclusion, the data suggest an important role of IL6 C allele and IL6R CC genotype on COVID-19 severity, in agreement with indirect evidence from the literature about the association of these genotypes with mortality rates, pneumonia, and heightening of protein plasmatic levels pro-inflammatory driven effects.


Subject(s)
COVID-19 , Interleukin-6 , Humans , Interleukin-6/genetics , Cross-Sectional Studies , Receptors, Interleukin-6/genetics , COVID-19/genetics , Genotype , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Cytokine Receptor gp130/genetics
2.
PLoS Med ; 20(1): e1004174, 2023 01.
Article in English | MEDLINE | ID: covidwho-2261992

ABSTRACT

BACKGROUND: Sepsis is characterised by dysregulated, life-threatening immune responses, which are thought to be driven by cytokines such as interleukin 6 (IL-6). Genetic variants in IL6R known to down-regulate IL-6 signalling are associated with improved Coronavirus Disease 2019 (COVID-19) outcomes, a finding later confirmed in randomised trials of IL-6 receptor antagonists (IL6RAs). We hypothesised that blockade of IL6R could also improve outcomes in sepsis. METHODS AND FINDINGS: We performed a Mendelian randomisation (MR) analysis using single nucleotide polymorphisms (SNPs) in and near IL6R to evaluate the likely causal effects of IL6R blockade on sepsis (primary outcome), sepsis severity, other infections, and COVID-19 (secondary outcomes). We weighted SNPs by their effect on CRP and combined results across them in inverse variance weighted meta-analysis, proxying the effect of IL6RA. Our outcomes were measured in UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative (HGI), and the GenOSept and GainS consortium. We performed several sensitivity analyses to test assumptions of our methods, including utilising variants around CRP and gp130 in a similar analysis. In the UK Biobank cohort (N = 486,484, including 11,643 with sepsis), IL6R blockade was associated with a decreased risk of our primary outcome, sepsis (odds ratio (OR) = 0.80; 95% confidence interval (CI) 0.66 to 0.96, per unit of natural log-transformed CRP decrease). The size of this effect increased with severity, with larger effects on 28-day sepsis mortality (OR = 0.74; 95% CI 0.47 to 1.15); critical care admission with sepsis (OR = 0.48, 95% CI 0.30 to 0.78) and critical care death with sepsis (OR = 0.37, 95% CI 0.14 to 0.98). Similar associations were seen with severe respiratory infection: OR for pneumonia in critical care 0.69 (95% CI 0.49 to 0.97) and for sepsis survival in critical care (OR = 0.22; 95% CI 0.04 to 1.31) in the GainS and GenOSept consortium, although this result had a large degree of imprecision. We also confirm the previously reported protective effect of IL6R blockade on severe COVID-19 (OR = 0.69, 95% CI 0.57 to 0.84) in the COVID-19 HGI, which was of similar magnitude to that seen in sepsis. Sensitivity analyses did not alter our primary results. These results are subject to the limitations and assumptions of MR, which in this case reflects interpretation of these SNP effects as causally acting through blockade of IL6R, and reflect lifetime exposure to IL6R blockade, rather than the effect of therapeutic IL6R blockade. CONCLUSIONS: IL6R blockade is causally associated with reduced incidence of sepsis. Similar but imprecisely estimated results supported a causal effect also on sepsis related mortality and critical care admission with sepsis. These effects are comparable in size to the effect seen in severe COVID-19, where IL-6 receptor antagonists were shown to improve survival. These data suggest that a randomised trial of IL-6 receptor antagonists in sepsis should be considered.


Subject(s)
COVID-19 , Sepsis , Humans , Interleukin-6/genetics , Hospitalization , Receptors, Interleukin-6/genetics , Sepsis/drug therapy , Sepsis/genetics , Mendelian Randomization Analysis
3.
J Clin Lab Anal ; 36(10): e24666, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1999875

ABSTRACT

BACKGROUND: SARS-CoV-2 is one of the most contagious viruses in the Coronaviridae (CoV) family, which has become a pandemic. The aim of this study is to understand more about the role of hsa_circ_0004812 in the SARS-CoV-2 related cytokine storm and its associated molecular mechanisms. MATERIALS AND METHODS: cDNA synthesis was performed after total RNA was extracted from the peripheral blood mononuclear cells (PBMC) of 46 patients with symptomatic COVID-19, 46 patients with asymptomatic COVID-19, and 46 healthy controls. The expression levels of hsa_circ_0004812, hsa-miR-1287-5p, IL6R, and RIG-I were determined using qRT-PCR, and the potential interaction between these molecules was confirmed by bioinformatics tools and correlation analysis. RESULTS: hsa_circ_0004812, IL6R, and RIG-I are expressed higher in the severe symptom group compared with the negative control group. Also, the relative expression of these genes in the asymptomatic group is lower than in the severe symptom group. The expression level of hsa-miR-1287-5p was positively correlated with symptoms in patients. The results of the bioinformatics analysis predicted the sponging effect of hsa_circ_0004812 as a competing endogenous RNA on hsa-miR-1287-5p. Moreover, there was a significant positive correlation between hsa_circ_0004812, RIG-I, and IL-6R expressions, and also a negative expression correlation between hsa_circ_0004812 and hsa-miR-1287-5p and between hsa-miR-1287-5p, RIG-I, and IL-6R. CONCLUSION: The results of this in-vitro and in silico study show that hsa_circ_0004812/hsa-miR-1287-5p/IL6R, RIG-I can play an important role in the outcome of COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Receptors, Cell Surface/metabolism , COVID-19/genetics , Cell Proliferation/physiology , Cytokine Release Syndrome , DNA, Complementary , Humans , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , SARS-CoV-2 , Up-Regulation/genetics
4.
Cell Biol Int ; 46(7): 1109-1127, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1825908

ABSTRACT

Cytokines play pivotal functions in coronavirus disease 2019 (COVID-19) pathogenesis. However, little is known about the rationale and importance of genetic variations associated with immune system responses, so-called "immunogenetic profiling." We studied whether polymorphisms of IL6, IL6R, TNFA, and IL1RN affect the disorder severity and outcome in patients infected with COVID19. We recruited 317 hospitalized patients with laboratory-confirmed COVID-19 from Bu-Ali hospital and 317 high-risk participants who had high exposure to COVID-19 patients but with a negative real-time-polymerase chain reaction (PCR) test. Multiple regression analyses were applied. We indicated that participants carrying the A allele in TNFA-rs361525, G>A (p < .004), the C allele in IL1RN-rs419598 T>C (p < .004), the A allele in IL6R-rs2228145, A>C (p = .047) are more susceptible to develop COVID-19. In contrast, those who carry the G allele of IL6-rs2069827, G>T (p = .01), are more protected from COVID-19. Also, we compared the various genotypes regarding the disorder severity and poor prognosis; we found that the AA genotype in TNFA is related to more aggressive illness and bad prognostic in contrast to the other inflammatory cytokines' genotypes. In addition, a high level of inflammatory indications, such as neutrophil-to-lymphocyte ratio and systemic immune-inflammation index, was observed in deceased patients compared with the survived subjects (p < .0001). We advised considering inflammatory cytokines polymorphisms as the main item to realize the therapeutic response against the acute respiratory distress syndrome induced by the SARS-CoV-2 virus.


Subject(s)
COVID-19 , Polymorphism, Single Nucleotide , COVID-19/genetics , Cytokines/genetics , Genetic Predisposition to Disease , Genotype , Humans , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-6/genetics , Iran/epidemiology , Receptors, Interleukin-6/genetics , SARS-CoV-2 , Tumor Necrosis Factor-alpha/genetics
5.
Pharmacol Res Perspect ; 10(2): e00940, 2022 04.
Article in English | MEDLINE | ID: covidwho-1712175

ABSTRACT

Anti-proinflammatory cytokine therapies against interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1 are major advancements in treating inflammatory diseases, especially rheumatoid arthritis. Such therapies are mainly performed by injection of antibodies against cytokines or cytokine receptors. We initially found that the glycolytic inhibitor 2-deoxy-d-glucose (2-DG), a simple monosaccharide, attenuated cellular responses to IL-6 by inhibiting N-linked glycosylation of the IL-6 receptor gp130. Aglycoforms of gp130 did not bind to IL-6 or activate downstream intracellular signals that included Janus kinases. 2-DG completely inhibited dextran sodium sulfate-induced colitis, a mouse model for inflammatory bowel disease, and alleviated laminarin-induced arthritis in the SKG mouse, an experimental model for human rheumatoid arthritis. These diseases have been shown to be partially dependent on IL-6. We also found that 2-DG inhibited signals for other proinflammatory cytokines such as TNF-α, IL-1ß, and interferon -γ, and accordingly, prevented death by another inflammatory disease, lipopolysaccharide (LPS) shock. Furthermore, 2-DG prevented LPS shock, a model for a cytokine storm, and LPS-induced pulmonary inflammation, a model for acute respiratory distress syndrome of coronavirus disease 2019 (COVID-19). These results suggest that targeted therapies that inhibit cytokine receptor glycosylation are effective for treatment of various inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Deoxyglucose/pharmacology , Glycosylation/drug effects , Inflammation/prevention & control , Receptors, Cytokine/drug effects , Animals , Cells, Cultured , Cytokine Receptor gp130/antagonists & inhibitors , Cytokine Receptor gp130/metabolism , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Inflammation/chemically induced , Janus Kinases/drug effects , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Cytokine/immunology , Receptors, Cytokine/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism
6.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1585255

ABSTRACT

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , Network Pharmacology/methods , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction
7.
Cell Transplant ; 30: 9636897211054481, 2021.
Article in English | MEDLINE | ID: covidwho-1511642

ABSTRACT

Biological and cellular interleukin-6 (IL-6)-related therapies have been used to treat severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure, which prompted further exploration of the role of IL-6 in human umbilical cord mesenchymal stem cell (hUCMSC) therapy. Peripheral blood mononuclear cells (PBMCs) were responders cocultured with hUCMSCs or exogenous IL-6. A PBMC suppression assay was used to analyze the anti-inflammatory effects via MTT assay. The IL-6 concentration in the supernatant was measured using ELISA. The correlation between the anti-inflammatory effect of hUCMSCs and IL-6 levels and the relevant roles of IL-6 and IL-6 mRNA expression was analyzed using the MetaCore functional network constructed from gene microarray data. The location of IL-6 and IL-6 receptor (IL-6R) expression was further evaluated. We reported that hUCMSCs did not initially exert any inhibitory effect on PHA-stimulated proliferation; however, a potent inhibitory effect on PHA-stimulated proliferation was observed, and the IL-6 concentration reached approximately 1000 ng/mL after 72 hours. Exogenous 1000 ng/mL IL-6 inhibited PHA-stimulated inflammation but less so than hUCMSCs. The inhibitory effects of hUCMSCs on PHA-stimulated PBMCs disappeared after adding an IL-6 neutralizing antibody or pretreatment with tocilizumab (TCZ), an IL-6R antagonist. hUCMSCs exert excellent anti-inflammatory effects by inducing higher IL-6 levels, which is different from TCZ. High concentration of IL-6 cytokine secretion plays an important role in the anti-inflammatory effect of hUCMSC therapy. Initial hUCMSC therapy, followed by TCZ, seems to optimize the therapeutic potential to treat COVID-19-related acute respiratory distress syndrome (ARDS).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , Interleukin-6/biosynthesis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Cells, Cultured , Coculture Techniques , Combined Modality Therapy , DNA, Complementary/genetics , Gene Expression Regulation/drug effects , Humans , Inflammation , Interleukin-6/genetics , Interleukin-6/pharmacology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/drug effects , Phytohemagglutinins/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/biosynthesis , Receptors, Interleukin-6/genetics , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Umbilical Cord/cytology
8.
J Med Virol ; 93(10): 5853-5863, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432418

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) infection may rely on a potential genetic background for the variations in the inflammatory response. We aimed to investigate the possible correlation between polymorphisms in the IL-6 gene at rs1800796/rs1800795, in IL-6R at rs2228145, in IL-10 at rs1800896 and rs1800871, in IL-17 at rs2275913 and rs763780 loci, and COVID-19 prevalence and mortality rates among populations of 23 countries. METHODS: We searched the literature for polymorphisms in China, Japan, India, Spain, Mexico, Sweden, Turkey, Brazil, Russia, Poland, Italy, South Africa, Netherlands, Greece, Germany, UK, Iran, Finland, Czechia, Tunisia, Norway, Egypt, Croatia. We recorded the prevalence and mortality rates (per million) caused by the Coronavirus infection recorded on 7th September 2020 and 6th December 2020. RESULTS: There was a significant positive correlation between the frequency of AG genotype of rs1800896 and prevalence recorded on 6th December 2020 (r: 0.53, r2 : 0.28, p < .05). There was a significant negative correlation between the mortality rates recorded on 7th September, and the AG genotype of rs2275913 (r: -0.51, r2 : 0.26, p < .05). There was a significant positive correlation between the prevalence recorded on 6th December, and TT genotype at rs763780 (r: 0.65, r2 :0.42, p < .05) while a negative correlation between prevalence and TC genotype at rs763780 (r: -0.66, r2 : 0.43, p < .05). Also, a significant negative correlation was found between mortality rates recorded on 6th December 2020 and CC genotype at rs763780 (r: -0.56, r2 : 0.31, p < .05). CONCLUSION: The variations in prevalence of COVID-19 and its mortality rates among countries may be explained by the polymorphisms at rs1800896 in IL-10, rs2275913 in IL-17A, and rs763780 loci in the IL-17F gene.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Interleukins/genetics , COVID-19/mortality , Genetic Association Studies , Genotype , Humans , Interleukin-10/genetics , Interleukin-17/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide , Prevalence , Receptors, Interleukin-6/genetics , SARS-CoV-2
9.
Front Immunol ; 12: 655122, 2021.
Article in English | MEDLINE | ID: covidwho-1365539

ABSTRACT

FOXP3+ regulatory T cells (Tregs) are central for maintaining peripheral tolerance and immune homeostasis. Because of their immunosuppressive characteristics, Tregs are a potential therapeutic target in various diseases such as autoimmunity, transplantation and infectious diseases like COVID-19. Numerous studies are currently exploring the potential of adoptive Treg therapy in different disease settings and novel genome editing techniques like CRISPR/Cas will likely widen possibilities to strengthen its efficacy. However, robust and expeditious protocols for genome editing of human Tregs are limited. Here, we describe a rapid and effective protocol for reaching high genome editing efficiencies in human Tregs without compromising cell integrity, suitable for potential therapeutic applications. By deletion of IL2RA encoding for IL-2 receptor α-chain (CD25) in Tregs, we demonstrated the applicability of the method for downstream functional assays and highlighted the importance for CD25 for in vitro suppressive function of human Tregs. Moreover, deletion of IL6RA (CD126) in human Tregs elicits cytokine unresponsiveness and thus may prevent IL-6-mediated instability of Tregs, making it an attractive target to potentially boost functionality in settings of adoptive Treg therapies to contain overreaching inflammation or autoimmunity. Thus, our rapid and efficient protocol for genome editing in human Tregs may advance possibilities for Treg-based cellular therapies.


Subject(s)
Gene Editing/methods , Interleukin-2 Receptor alpha Subunit/genetics , Receptors, Interleukin-6/genetics , T-Lymphocytes, Regulatory/metabolism , Blood Buffy Coat/cytology , CRISPR-Cas Systems/genetics , Forkhead Transcription Factors/metabolism , Gene Knockdown Techniques , HEK293 Cells , Healthy Volunteers , Humans , Immunotherapy, Adoptive/methods , Primary Cell Culture , RNA, Guide, Kinetoplastida/genetics , Time Factors
10.
Cytokine ; 148: 155662, 2021 12.
Article in English | MEDLINE | ID: covidwho-1330738

ABSTRACT

BACKGROUND: Elevated Interleukin-6 (IL-6) may play an important role in the pathophysiology of COVID-19 yet attenuated response is not seen across all severe patients. We aimed to determine the effect of IL-6 baseline levels and other clinical variables on mortality and outcomes in hospitalized COVID-19 patients as well as to explore genetic variants associated with attenuated IL-6 response. METHODS: Baseline IL-6 cytokine levels were measured in hospitalized patients participating in ongoing ODYSSEY phase 3 randomized study of tradipitant and placebo in hospitalized patients with severe COVID-19 who are receiving supplemental oxygen support. Furthermore blood samples for whole genome sequencing analysis were collected from 150 participants. RESULTS: We report significantly elevated IL-6 in COVID-19 infected hospitalized patients, n = 100 (p-value < 0.0001) when compared to controls n = 324. We also report a significantly increased level of IL-6 (p-value < 0.01) between the severe and mild COVID-19 patients with severity defined on a WHO scale. Excessive IL-6 plasma levels correlate with higher mortality (p-value 0.001). Additionally, based on our classification analysis, combination of IL-6 elevation and high levels of serum glucose can identify highest risk-group of COVID19 patients. Furthermore, we explore the role of genetic regulatory variants affecting baseline IL-6 levels specifically in COVID-19 patients. We have directly tested the association between variants in the IL6 and IL6R gene region and IL6 plasma levels. We provide results for a common IL-6 variant previously associated with pneumonia, rs1800795, and rs2228145 that was previously shown to affect IL-6 plasma levels, as well as report on novel variants associated with IL-6 plasma levels detected in our study patients. CONCLUSIONS: While it is unlikely that "cytokine storm" is the norm in severe COVID19, baseline elevations above 150 pg/ml may be associated with worst outcomes and as such may warrant treatment considerations. So far no clinical studies used IL-6 baseline assessment to stratify the patient population participating in clinical studies. We believe that careful examination and interpretation of the IL-6 levels and genetic variants can help to determine a patient population with a potentially very robust clinical response to IL-6 inhibition. TRIAL REGISTRATION: Clinicaltrials.gov: NCT04326426.


Subject(s)
COVID-19/blood , COVID-19/genetics , Interleukin-6/blood , Polymorphism, Single Nucleotide/genetics , Receptors, Interleukin-6/genetics , Alleles , COVID-19/mortality , Heterozygote , Humans , Interleukin-6/genetics
11.
Exp Mol Med ; 53(7): 1116-1123, 2021 07.
Article in English | MEDLINE | ID: covidwho-1307318

ABSTRACT

Interleukin-6 (IL-6) plays a crucial role in host defense against infection and tissue injuries and is a bioindicator of multiple distinct types of cytokine storms. In this review, we present the current understanding of the diverse roles of IL-6, its receptors, and its signaling during acute severe systemic inflammation. IL-6 directly affects vascular endothelial cells, which produce several types of cytokines and chemokines and activate the coagulation cascade. Endothelial cell dysregulation, characterized by abnormal coagulation and vascular leakage, is a common complication in cytokine storms. Emerging evidence indicates that a humanized anti-IL-6 receptor antibody, tocilizumab, can effectively block IL-6 signaling and has beneficial effects in rheumatoid arthritis, juvenile systemic idiopathic arthritis, and Castleman's disease. Recent work has also demonstrated the beneficial effect of tocilizumab in chimeric antigen receptor T-cell therapy-induced cytokine storms as well as coronavirus disease 2019 (COVID-19). Here, we highlight the distinct contributions of IL-6 signaling to the pathogenesis of several types of cytokine storms and discuss potential therapeutic strategies for the management of cytokine storms, including those associated with sepsis and COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Antibodies, Monoclonal, Humanized/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Cytokines/genetics , Cytokines/metabolism , Endothelium, Vascular/immunology , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Sepsis/genetics , Sepsis/immunology , Sepsis/pathology , Sepsis/prevention & control
12.
J Med Virol ; 93(2): 831-842, 2021 02.
Article in English | MEDLINE | ID: covidwho-1206798

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to a massive cytokine release. The use of the anti-interleukin-6 receptor monoclonal antibody tocilizumab (TCZ) has been proposed in this hyperinflammatory phase, although supporting evidence is limited. We retrospectively analyzed 88 consecutive patients with COVID-19 pneumonia that received at least one dose of intravenous TCZ in our institution between 16 and 27 March 2020. Clinical status from day 0 (first TCZ dose) through day 14 was assessed by a 6-point ordinal scale. The primary outcome was clinical improvement (hospital discharge and/or a decrease of ≥2 points on the 6-point scale) by day 7. Secondary outcomes included clinical improvement by day 14 and dynamics of vital signs and laboratory values. Rates of clinical improvement by days 7 and 14 were 44.3% (39/88) and 73.9% (65/88). Previous or concomitant receipt of subcutaneous interferon-ß (adjusted odds ratio [aOR]: 0.23; 95% confidence interval [CI]: 0.06-0.94; P = .041) and serum lactate dehydrogenase more than 450 U/L at day 0 (aOR: 0.25; 95% CI: 0.06-0.99; P = .048) were negatively associated with clinical improvement by day 7. All-cause mortality was 6.8% (6/88). Body temperature and respiratory and cardiac rates significantly decreased by day 1 compared to day 0. Lymphocyte count and pulse oximetry oxygen saturation/FiO2 ratio increased by days 3 and 5, whereas C-reactive protein levels dropped by day 2. There were no TCZ-attributable adverse events. In this observational single-center study, TCZ appeared to be useful and safe as immunomodulatory therapy for severe COVID-19 pneumonia.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Cytokine Release Syndrome/prevention & control , Immunologic Factors/therapeutic use , SARS-CoV-2/pathogenicity , Administration, Intravenous , Adult , Body Temperature/drug effects , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Female , Heart Rate/drug effects , Humans , Interferon-beta/adverse effects , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , Respiratory Rate/drug effects , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Survival Analysis
14.
Cell Commun Signal ; 18(1): 190, 2020 12 27.
Article in English | MEDLINE | ID: covidwho-992498

ABSTRACT

The rapid ability of SARS-CoV-2 to spread among humans, along with the clinical complications of coronavirus disease 2019-COVID-19, have represented a significant challenge to the health management systems worldwide. The acute inflammation and coagulation abnormalities appear as the main causes for thousands of deaths worldwide. The intense inflammatory response could be involved with the formation of thrombi. For instance, the presence of uncleaved large multimers of von Willebrand (vWF), due to low ADAMTS13 activity in plasma could be explained by the inhibitory action of pro-inflammatory molecules such as IL-1ß and C reactive protein. In addition, the damage to endothelial cells after viral infection and/or activation of endothelium by pro-inflammatory cytokines, such as IL-1ß, IL-6, IFN-γ, IL-8, and TNF-α induces platelets and monocyte aggregation in the vascular wall and expression of tissue factor (TF). The TF expression may culminate in the formation of thrombi, and activation of cascade by the extrinsic pathway by association with factor VII. In this scenario, the phosphatidylserine-PtdSer exposure on the outer leaflet of the cell membrane as consequence of viral infection emerges as another possible underlying mechanism to acute immune inflammatory response and activation of coagulation cascade. The PtdSer exposure may be an important mechanism related to ADAM17-mediated ACE2, TNF-α, EGFR and IL-6R shedding, and the activation of TF on the surface of infected endothelial cells. In this review, we address the underlying mechanisms involved in the pathophysiology of inflammation and coagulation abnormalities. Moreover, we introduce key biochemical and pathophysiological concepts that support the possible participation of PtdSer exposure on the outer side of the SARS-CoV-2 infected cells membrane, in the pathophysiology of COVID-19. Video Abstract.


Subject(s)
COVID-19/genetics , Inflammation/genetics , Phosphatidylserines/genetics , Thrombosis/genetics , ADAM17 Protein/genetics , ADAMTS13 Protein/genetics , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Endothelial Cells/virology , Humans , Inflammation/complications , Inflammation/virology , Phosphatidylserines/metabolism , Receptors, Interleukin-6/genetics , SARS-CoV-2/pathogenicity , Thrombosis/pathology , Thrombosis/virology , von Willebrand Factor/genetics
16.
Eur Cytokine Netw ; 31(2): 44-49, 2020 Jun 01.
Article in English | MEDLINE | ID: covidwho-771671

ABSTRACT

BACKGROUND: Evidence links COVID-19 severity to hyper-inflammation. Treatment with tocilizumab, a monoclonal antibody directed against the interleukin-6 (IL-6) receptor, was shown to lead to clinical improvement in patients with severe COVID-19. We, therefore, performed the present systematic review and meta-analysis to investigate whether the circulating levels of IL-6 is a reliable indicator of disease severity among patients affected with COVID-19. METHODS: A systematic search was conducted in PubMed, Scopus, Web of Science, and Google Scholar on April 19, 2020. RESULTS: Eleven studies provided data of IL-6 levels in patients with severe to critical COVID-19 (severe) and patients with mild to moderate COVID-19 (non-severe). The included studies were of moderate to high quality. The mean patients' age was 60.9 years, ranging from 45.2 to 76.7 years in the severe group and 46.8 years, ranging from 37.9 to 61 years, in the nonsevere group. Fifty-two percent were male in the severe group, as compared to 46% in the non-severe group. An overall random effects meta-analysis showed significantly higher serum levels of IL-6 in the severe group than in the non-severe group with a mean difference of +23.1 pg/mL (95% CI: 12.42-33.79) and the overall effect of 4.24 (P-value < 0.001). Meta-regressions showed that neither age nor sex significantly influenced the mean difference of IL-6 between the groups. CONCLUSIONS: Meta-analysis and meta-regression reveal a reliable relationship between IL-6 and COVID-19 severity, independent of age and sex. Future research is, however, required to assess the effect of BMI on the pattern of IL-6 production in patients with COVID-19. Also, there might be confounding factors that influence the relationship between IL-6 and COVID-19 severity and remain as yet unknown.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Interleukin-6/antagonists & inhibitors , Pneumonia, Viral/drug therapy , Aged , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Female , Gene Expression , Humans , Intensive Care Units , Interleukin-6/genetics , Interleukin-6/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Severity of Illness Index , Survival Analysis , Treatment Outcome
17.
Rev Med Virol ; 30(5): e2123, 2020 09.
Article in English | MEDLINE | ID: covidwho-639361

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) and pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a major concern globally. As of 14 April 2020, more than 1.9 million COVID-19 cases have been reported in 185 countries. Some patients with COVID-19 develop severe clinical manifestations, while others show mild symptoms, suggesting that dysregulation of the host immune response contributes to disease progression and severity. In this review, we have summarized and discussed recent immunological studies focusing on the response of the host immune system and the immunopathology of SARS-CoV-2 infection as well as immunotherapeutic strategies for COVID-19. Immune evasion by SARS-CoV-2, functional exhaustion of lymphocytes, and cytokine storm have been discussed as part of immunopathology mechanisms in SARS-CoV-2 infection. Some potential immunotherapeutic strategies to control the progression of COVID-19, such as passive antibody therapy and use of interferon αß and IL-6 receptor (IL-6R) inhibitor, have also been discussed. This may help us to understand the immune status of patients with COVID-19, particularly those with severe clinical presentation, and form a basis for further immunotherapeutic investigations.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/prevention & control , Immune Evasion/drug effects , Immunologic Factors/therapeutic use , Interferon Type I/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disease Progression , Gene Expression Regulation , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive/methods , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Molecular Targeted Therapy/methods , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Severity of Illness Index , Signal Transduction , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL